Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Rep ; 10(7): e15212, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35403369

RESUMEN

Type 2 diabetes (T2D) affects >30 million Americans and nearly 70% of individuals with T2D will die from cardiovascular disease (CVD). Circulating levels of the inflammatory signaling lipid, prostaglandin E2 (PGE2 ), are elevated in the setting of obesity and T2D and are associated with decreased cardiac function. The EP3 and EP4 PGE2 receptors have opposing actions in several tissues, including the heart: overexpression of EP3 in cardiomyocytes impairs function, while EP4 overexpression improves function. Here we performed complementary studies in vitro with isolated cardiomyocytes and in vivo using db/db mice, a model of T2D, to analyze the effects of EP3 inhibition or EP4 activation on cardiac function. Using echocardiography, we found that 2 weeks of systemic treatment of db/db mice with 20 mg/kg of EP3 antagonist, beginning at 6 weeks of age, improves ejection fraction and fractional shortening (with no effect on heart rate). We further show that either EP3 blockade or EP4 activation enhances contractility and calcium cycling in isolated mouse cardiomyocytes cultured in both normal and high glucose. Thus, peak [Ca2+ ]I transient amplitude was increased, while time to peak [Ca2+ ]I and [Ca2+ ]I decay were decreased. These data suggest that modulation of EP3 and EP4 activity has beneficial effects on cardiomyocyte contractility and overall heart function.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dinoprostona/farmacología , Humanos , Ratones , Miocitos Cardíacos , Subtipo EP3 de Receptores de Prostaglandina E , Subtipo EP4 de Receptores de Prostaglandina E
2.
Mol Metab ; 54: 101347, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34626853

RESUMEN

OBJECTIVE: Type 2 diabetes is characterized by hyperglycemia and inflammation. Prostaglandin E2, which signals through four G protein-coupled receptors (EP1-4), is a mediator of inflammation and is upregulated in diabetes. We have shown previously that EP3 receptor blockade promotes ß-cell proliferation and survival in isolated mouse and human islets ex vivo. Here, we analyzed whether systemic EP3 blockade could enhance ß-cell mass and identity in the setting of type 2 diabetes using mice with a spontaneous mutation in the leptin receptor (Leprdb). METHODS: Four- or six-week-old, db/+, and db/db male mice were treated with an EP3 antagonist daily for two weeks. Pancreata were analyzed for α-cell and ß-cell proliferation and ß-cell mass. Islets were isolated for transcriptomic analysis. Selected gene expression changes were validated by immunolabeling of the pancreatic tissue sections. RESULTS: EP3 blockade increased ß-cell mass in db/db mice through enhanced ß-cell proliferation. Importantly, there were no effects on α-cell proliferation. EP3 blockade reversed the changes in islet gene expression associated with the db/db phenotype and restored the islet architecture. Expression of the GLP-1 receptor was slightly increased by EP3 antagonist treatment in db/db mice. In addition, the transcription factor nuclear factor E2-related factor 2 (Nrf2) and downstream targets were increased in islets from db/db mice in response to treatment with an EP3 antagonist. The markers of oxidative stress were decreased. CONCLUSIONS: The current study suggests that EP3 blockade promotes ß-cell mass expansion in db/db mice. The beneficial effects of EP3 blockade may be mediated through Nrf2, which has recently emerged as a key mediator in the protection against cellular oxidative damage.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Células Secretoras de Insulina/efectos de los fármacos , Subtipo EP3 de Receptores de Prostaglandina E/antagonistas & inhibidores , Animales , Proliferación Celular/efectos de los fármacos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Estrés Oxidativo/efectos de los fármacos , Subtipo EP3 de Receptores de Prostaglandina E/metabolismo
3.
Sci Rep ; 11(1): 12977, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34155315

RESUMEN

The prevalence of maternal obesity is increasing in the United States. Offspring born to women with obesity or poor glycemic control have greater odds of becoming obese and developing metabolic disease later in life. Our group has utilized a macaque model to study the metabolic effects of consumption of a calorically-dense, Western-style diet (WSD; 36.3% fat) during pregnancy. Here, our objective was to characterize the effects of WSD and obesity, alone and together, on maternal glucose tolerance and insulin levels in dams during each pregnancy. Recognizing the collinearity of maternal measures, we adjusted for confounding factors including maternal age and parity. Based on intravenous glucose tolerance tests, dams consuming a WSD showed lower glucose area under the curve during first study pregnancies despite increased body fat percentage and increased insulin area under the curve. However, with (1) prolonged WSD feeding, (2) multiple diet switches, and/or (3) increasing age and parity, WSD was associated with increasingly higher insulin levels during glucose tolerance testing, indicative of insulin resistance. Our results suggest that prolonged or recurrent calorically-dense WSD and/or increased parity, rather than obesity per se, drive excess insulin resistance and metabolic dysfunction. These observations in a highly relevant species are likely of clinical and public health importance given the comparative ease of maternal dietary modifications relative to the low likelihood of successfully reversing obesity in the course of any given pregnancy.


Asunto(s)
Dieta Occidental , Glucosa/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , Alimentación Animal , Animales , Biomarcadores/sangre , Glucemia , Femenino , Edad Gestacional , Insulina/sangre , Macaca fuscata , Embarazo
4.
J Vis Exp ; (154)2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31904022

RESUMEN

The measurement of oxygen consumption in spheroid clusters of cells, such as ex vivo pancreatic islets, has historically been challenging. We demonstrate the measurement of islet oxygen consumption using a 96-well microplate designed for the measurement of oxygen consumption in spheroids. In this assay, spheroid microplates are coated with a cell and tissue adhesive on the day prior to the assay. We utilize a small volume of adhesive solution to encourage islet adherence to only the bottom of the well. On the day of the assay, 15 islets are loaded directly into the base of each well using a technique that ensures optimal positioning of islets and accurate measurement of oxygen consumption. Various aspects of mitochondrial respiration are probed pharmacologically in non-human primate islets, including ATP-dependent respiration, maximal respiration, and proton leak. This method allows for consistent, reproducible results using only a small number of islets per well. It can theoretically be applied to any cultured spheroids of similar size.


Asunto(s)
Islotes Pancreáticos/metabolismo , Consumo de Oxígeno , Animales , Macaca fuscata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...